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ABSTRACT

This final report covers the work done by our group of neural network computing at Uni-
versity of Maryland for the past three years under the sponsorship of AFOSR. During this grant
period, we studied the neural network's capability of processing temporal or sequential data. Re-
,urrent neural networks were used to perform inference on grammars. An external memory stack
was constructed to work with the neural network to perform inferences on context free languages.
And finally. a spatially homogeneous. ltoally connected, recurrent neural network that could sim-
ulate any given Turing machine, including the universal Turing machine was devised. It is capable
of performing uniersal computations and demonstrated the universal power of recurrent neural
netwvork arvhitecturcs. In order to train these sequential neural net machines. we have investigated
the foruard propagating learning algorithms. A fast learning algorithm is proposed that could re-
duce the computation complexity from O(N 4T) to O(N 3T). This algorithm was tested on a contin-
uous temporal problem that will be the next phase of ou•- research effort.

I. INTRODUCTION

Artificial neural networks are very powerful constructs. It is supposed to simulate the brain
structure of human to perform intelligent tasks. Howevcr, most of the current research in this area
seem to treat neural net as only that of a functional mapper. It is used to conduct an input- output
mapping. We think that most intelligent tasks involve the processing of temperol or sequential sig-
nals. Therefore, neural networks must be able to extract generation rules from sequential patterns.
i.e. grammatical inferences. In the past three years, our project dealt with topics surrounding such
issues. Neural networks with recursive connections were chosen to process such sequential data
that are correlated in both space and time. The recurrent connections that serve as a memory of his-
tory of the sequence and empower the neural network to extract temporal orders out of the sequen-
tial patterns. A recurrent network in itself behaves like a finite state machine if we can cluster the
neuronal state and quantizt them. Indeed. numerical simulations showed that recurrent neural net
can be easily trained to do just that. Perfect finite state machine can be extracted from only a hand-
ful amount of data from a sequence. Theoretical analysis also established that the computational
power of a finite state machine would increase tremendously if it is coupled with a memory stack.
The resulting pushdown automata could recognize an extended set of language called context free
language which is much more expressive than the finite state machine grammar. Even more com-
putational power could be achieved by replacing the stack memory with an infinite tape and em-
power the neural network finite state controller to erase and write on the tape and thus becoming a
Turing machine. Once established that neural net can fully simulate universal Turing machine, we
have no doubt that neural net should have the full power to simulate any given intelligent task.



II. Simulation of Finite State Machine

As in most applications of neural nets, the topology of the connection weights in the net is
crucial to the success of the applications. We studied the issue regarding the order of connections
to the simulation of finite state machines and pushdown automata. Specifically, we established
that:

Theorem I: For any given finite state machine(FSM) with N states and M input symbols. there are
at least one second order connected re,:urent neural net (RNN) with N state neurons and M input
neurons that can directly simulate the FSM.

This theorem ensures us that RNN can be used to learn regular grammar since the existence
of the solution is guarantccd. On the other hand, we can also show that

Theorem 2: There aie some FSM structure that can not be direcily simulated by any RNN with
first order connections without hidden neurons.

A notable example is the four state loop transition diagram of a dual parity finite state gram-
mar. However, this does not imply that first order recurrent net cannot learn the dual parity gram.
mar. Because we can also prove the following

Theorem 3: There are at least one first order RNN with at most NM neurons that can simulate a
given FSM indirectly. That is. it cani simulate an equivalent FSM to the given FSM and this equiv-
alent machine can b.- obtaincd automatically.

Theorem 4: In a second order RNN with S state neurons and M input neurons, the probability of
it to simulate a given finite state machine with N ststes and M input symbols is given by

P (N, S)],

where L(NS) is the number of dichotomies that can be implemented by a S-dimensional percep-
tron for an N-input pattern.

These theorems give us good guidance in our choice of diffcreat RNN connection topologies for
various grammatical inference tasks. Similar results for neural net simulation of PDA were also
obtained.

Theorem 5: For any given deterministic pushdown automata with N states. M symbols and M
stack symbols. there exists a third order RNN coupled with an external stack memory that can sim-
ulate it completely.



Likewise we also have an estimate of the capacity of a K-th ordered RNN to simulate finite state
machines.

Theorem 6: The capacity of a K-th order RNN with N recurrent neurons, C(N,K), can be inferred
from the recursion formula:

C(N,K) = C(N-1, K) +C(N-1, K-1)

III. Simulation of Pushdown Automata with enhanced RNN:

In previous work we have developed a RNN pushdown that uses a third order connected re-
current neural net controller to operate an analog stack memory. Many context free grammars were
learned by this construct from a limited set of positive and negative samples. A typical example is
renthesis balance checker.

It came to our attention later that several hard grammar such as the Palindrome is very diffi-
cult to learn by the above system. To solve this pioblem, we devised an enhanced recurrent neural
net with "full order" connections. It turns out that this enhanced neural net can learn grammars such
as the Palindrome very easily. It automatically figured out some very tricky transition rules asso-
ciated with such grammar. After qoantization, the 'earncd rules are again exact and the generaliza-
tion to test other samples of this granmmar is again infinite.

IV. Neural net Turing Machine

Turing machine is the most powerful sequential machine that is capable of univcrsal compu-
tations. Thn, ability of the neural net to simulate Turing machines is therefore an important issue in
neural computing. In the past year, we have succeeded in constructing just such a neural net Turing
machine. The finite state controller and the tape symbols are represented by neurons arranged into
a row of columns. Each neuron is locally connected to other neurons in the same and neighboring
columns. The detailed values of these weights and the specific construction of the network is be-
yondi this rtporL We shall summarize our results in the following two theorems.

Theorem 1: Given an arbitrary determinstic Turing machine with M symbols and N states, there
exists a neural network with M+2N+I rows of neurons and a set of second order locally connected
weigh,!s that can simulate it in 2-to-1 time.

Theorem 2: Given an arbitrary deterministic Turing machine with M symbols and N states. there
exists a neural net with M+N+2 rows of neurons and two sets of second order locally connected
weights that can simulate it in real time.

Currently, we are studying the training of the neural net Turing machine to recognize some

.-



simple grammars, for example, the parenthesis checker.

V. Green Function Method for Fast On-line Training of Recurrent Neural Networks

In processing temporal or sequential signals, recurrent neural network is found to be able to
capture most of the complex temporal orders and correlations. However, a particular pressing issue
concerning recurrent net is the lack of an efficient on-line training algorithm especially when we
are dealing with applications that would require large number of internal states or neurons.

Among the currently popular training algorithms, the error back propagation method is not
an on-line algorithms since we have to wait until the signals propagate all the way to the output
layer to obtain the error message and then propagate back the error to each layer for weight ccrrec-
tions. The Williams and Zipser error prediction forward propagation algorithm is indeed on-line.
However. it is very expensive since it needs O(N4T) number of !:alculations for each updating of
the weights. Recently, Toomerian and Barhen modified their adjoimt operator approach inm an on-
line algorithm and claimed that it only needs O(N 3T' number of calculations. However, R careful
examination of their scheme revealed some flaw in their derivation and therefore invalidated their
claim.

In the past year. we developed an alternative approach in which we tried to avoid the redun-
dant calculations presented in the forward propagation method and use a common Green function
to integrate the error sensitivity matrix. We also exploit the special form of the driving term in the
equation to reduce the number of calculations. The combined effect is an algorithm that is truly
O(N3T).

VI. Controlling Chaos with Neural Networks

Many of the everyday signal processing problems are temporal in nature. They are the con-
tinuous or analog counterpart of the symbolic sequential patterns. The extraction of temporal or-
ders from such continuous temporal signals would found many real world applications in signal
processing. As a preliminary study of the neural net capability in this respect. we studied the inter-
"esting chaos control problem.

The control of chaos means that to stabilize a chaotic system settling around an unstable fixed
point or periodic orbit. The system we chosed is the two dimensional Henon map:

X1+. 1 = A-X'+BYI

Yt+ I = X,

where the parameters are chosen as A=1.29 and B--0.3 and is in a typical chaotic regime.



One of the unstable fixed point for this attractor can be found as

XF=YF = [B-1 -)+4A] = 0.838486

Our objective is to construct a neural net controller that can be trained to locate the unstable
fixed point automatically and to guide the chaotic system to this point and settled there indefinitely.
Our study seems successful. The neural net is easily trained to acomplish this goal with an objec-
tive function given by:

12
E, [(XI -Xyo + (Y' -Y~

It measures the deviation of the orbit from an averaged orbit. In the vicinity of the fixed point, the
orbit is in general sticky and therefore contribute heavily to the averaging of orbits. the minization
of the objective function therefore requires the system to stay around the fixed point.

We also add noises to the system either in the mapping itself or in the emulating neural net
weights. The system turns out to be rather robust against noises. It learned to control the system
very smoothly without the appearance of uncontrollable outbursts seen in the originai OGY model.
It also located the fixed point by itself. Since chaotic system has the characteristics of moving
around the whole chaotic attractor in an ergotic fashion, the system is bound to travel by the fixed
point location frequently. This makes the controllability of a chaotic system even better than a reg-
ular system.

VII. Future Directions:

In the previous research, we have Jeveloped knowledge of extracting temporal orders mainly
from discrete symbolic sequences. SL ,uential machines that generate these sequences can be con-
structed from a few hundred of positive and negative samples each about ten symbols or less. The
constructed machine are usually complete and exact capable to generalize to the infinite number of
member sequences that belong to the same grammar. The rich phenomena associated with these
discrete symbolic sequences should be a subset of what could be described in an analog or contin-
uous sequences. In one sense, a continuous sequence is a discrete sequence with an infinite number
of different discrete symbols. It is therefore much mere intricate to deal with. However, our pre-
liminary study of such problems indicated that neural net could be easily adapted to the analog sit-
uation. Instead of a discrete recurrent neural net that simulate a finite state machine, we should use
an infinitesimaly incremented constructed so that it simulated a differential or integral systaem.

An especially interesting realty of research could be directed toward the chaotic system. It is
known that veiy simple system could exhibit very complicated orbit. In a study of aw'omata, it was



pointed out by Wolfram that it can generate sequences with arbitrary complexity. An understand-
ing of controlling these subset of dynamical systems would be the most fruitful endeaver in the
neural net research.
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